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9,9'—10,10' bisanthracenic photocyclomers V linked by a poly-
(oxyethylene) chain.45,19 In contrast, in the complex 1,2Na+ the 
interaction of the oxygen lone pairs with the cation may be ex­
pected to decrease the repulsion experienced in the free ligand 
and, in so doing, to restore the normal regioselectivity of the 
photoprocess. This aspect was examined by irradiation of a 
NaC104-saturated methanolic solution of I, under the same 
conditions as above, and although no photoproduct was isolated, 
evidence for the formation of essentially the photocyclomer 
9,9'—10,10' 111,2Na+ is obtained from the following observations: 
(i) the anthracenic 1L3 band (310-420 nm) disappeared without 
any significant growing in of a naphthalenic absorption, (ii) the 
disappearance quantum yield of I was at least 1 order of magnitude 
greater (<pR > 4 X 10"3) than that observed from the cation free 
solution, and (iii) in the dark, the photoproduct underwent an 
almost quantitative fast thermal back reaction with a rate (kdiss 
=* 7 X 10~4 s"1) close to that recorded for compounds V;19 this 
last feature can be explained by a competition between MeOH 
and I to solvate Na+; the desolvated photocyclomer III then is 
thermally unstable and reverts to the anthracenophane I. 

A greater understanding of such systems in which fluorescence 
and photochemistry can be cation directed and an improvement 
of their physical properties are under current investigation. 
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Insertion reactions of metal-carbon a bonds are an integral and 
important part of transition-metal organometallic chemistry.3 Of 
these reactions, the conversions involving the thermodynamically 
spontaneous migratory insertion of coordinated nitric oxide, i.e.,4 

ON—M-R — M—N(=0)—R - ^ L—M—N(=0)— R 
(1) 

(where R = alkyl and L = Lewis base) are of particular interest 
since they lead to the formation of new carbon-nitrogen bonds. 

(1) Organometallic Nitrosyl Chemistry. 28. For part 27, see: Hunter, 
A. D.; Legzdins, P. Organometallics, in press. 

(2) Taken in part from: Wassink, B. Ph.D. Dissertation, The University 
of British Columbia, Vancouver, Canada, 1985. 

(3) Collman, J. P.; Hegedus, L. S. "Principles and Applications of Orga-
notransition Metal Chemistry"; University Science Books: Mill Valley, CA, 
1980. 

(4) (a) Weiner, W. P.; Bergman, R. G. J. Am. Chem. Soc. 1983,105, 3922 
and references therein, (b) Seidler, M. D.; Bergman, R. G. Organometallics 
1983, 2, 1897 and references therein. 

Figure 1. Molecular structure of [(7,5-C5H5)Cr(NO)2|N(CH2)OH|]PF6. 
Selected bond lengths (A) and angles (deg): C(I) -N(I) = 1.253 (9), 
N(I)-O(I) = 1.392 (7), Cr-N(I) = 2.034 (5), Cr-N(2) = 1.702 (6), 
Cr-N(3) = 1.709 (5), N(2)-0(2) = 1.163 (6), N(3)-0(3) = 1.152 (6), 
Cr-C5H5(centroid) = 1.843, H(10)-F(2) = 2.14 (8), Cr-N(I)-C(I) = 
128.9 (5), C(I) -N(I) -O(I) = 111.5 (6), 0 ( I ) -N( I ) -Cr = 119.6 (4), 
N(2)-Cr-N(3) = 93.5 (3), 0(2)-N(2)-Cr = 174.5 (6), 0(3)-N(3)-Cr 
= 172.2 (5). 

We now wish to report the first instance of the formation of a 
C-N linkage by the insertion of NO+ into a transition-metal-
carbon bond. Specifically, we present the conditions for effecting 
the transformation 

(r)5-C5H5)Cr(NO)2CH3 + NOPF6
 1 ^ 

[0,5-C5H5)Cr(NO)2{N(CH2)OH)]PF6 (2) 

and describe in detail the characterization of the novel product, 
a rare organometallic formaldoxime complex. 

In a typical experiment, a green solution of (j)5-C5H5)Cr-
(NO)2CH3

5 (0.384 g, 2.00 mmol) in CH2Cl2 (20 mL) was treated 
with solid NOPF6 (0.280 g, 1.60 mmol), and the mixture was 
stirred at room temperature under N2. After 1 h, a dark green, 
microcrystalline solid began to precipitate. This solid was collected 
by filtration after 3.5 h and was recrystallized from CH2Cl2 to 
obtain 0.260 g (44% yield based on NOPF6) of analytically pure6 

[(^-C5H5)Cr(NO)2(N(CH2)OH)]PF6 as green, diamagnetic 
crystals. The crystals are moderately air-stable and are most 
soluble in solvents such as nitromethane.7 

A single-crystal X-ray crystallographic analysis of the form­
aldoxime complex8 established the cation as a normal "three-legged 
piano stool" (Figure 1). Within the cation, the (77'-C5H5)Cr(NO)2 
fragment closely resembles that found in (^-C5H5)Cr(NO)2Cl.9 

Furthermore, the H2CN(OH)Cr portion is essentially planar, and 
the intramolecular dimensions of the formaldoxime ligand resemble 

(5) Hoyano, J. K.; Legzdins, P.; Malito, J. T. / . Chem. Soc., Dalton Trans. 
1975, 1022. 

(6) Anal. Calcd for C6H8N3O3PF6Cr: C, 19.63; H, 2.20; N, 11.45. 
Found: C, 19.39; H, 2.15; N, 11.11. IR (Nujol mull) yN0 1854 (s), 1761 (s), 
996 (m) cm"1, 3480 (m), 1646 (w) cm"1; IR (CH2Cl2) i*NO 1847 (m), 1746 
(m) cm"1; IR (CHjNO2) vN0 1847 (s), 1748 (s) cm"1; 1H NMR (CD3NO2) 
6 8.84 (d, 1 H, VIHV-HX = °-9 H z - ̂ xONCHAHB), 7.67 (d, 1 H, V I H . . I H B = 
5.1 Hz, HxONCHAi/B), 7.30 (dd, 1 H, HxONC#AHB), 6.08 (s, 5 H, C5H5); 
1H NMR (CD2Cl2) a 8.92 (s, br, 1 H, #xONCHAHB), 7.66 (d, 1 H, 2 / IH A-IH B 
= 5.2 Hz, HxONCHA//B), 7.14 (d, 1 H, HxONCtfAHB), 5.98 (s, 5 H, C5A5); 
13CI1H) NMR (CD3NO2) S 159.1 (s, HONCH2), 105.4 (s, C5H5);

 13C NMR 
(gated 1H decoupled) (CDjNO2) S 159.0 (dd, './i3C_iH = 178.7, 186.9 Hz, 
HONCHAHB), 105.3 (dm, '/i3C-iH = 183.1 Hz, C5H5). 

(7) Drago, R. S. Pure Appl. Chem. 1980, 52, 2261. 
(8) X-ray diffraction data for [(^-C5H5)Cr(NO)2IN(CH2)OH)]PF6: 

monoclinic; space group PlxIc; a = 7.903 (3) A, * = 12.192 (2) A, c = 13.417 
(5) A; 0 = 95.59 (2)°; V= 1286.6 A3; Z = 4; absorption coefficient = 10.71 
cm"1; diffractometer, Enraf-Nonius CAD4F; radiation, Mo Ka, graphite 
monochromator (X(Ka1) = 0.709 30 A); scan range = 0° < 20 < 50°; re­
flections = 1262 with I0 > 3tr/0; R = 0.045, R„ = 0.050; error in observation 
of unit weight = 1.79e. All atoms except for the cyclopentadienyl H atoms 
were refined. Disorder involving two orientations of both the C5H5 ring and 
the F atoms of the anion equatorial with respect to the oxime OH group was 
accommodated during refinement (Watkins, D. J.; Carruthers, F. R. 
"CRYSTALS"; Chemical Crystallography Laboratory; University of Oxford, 
England, 1984). Only one orientation of the C5H5 ring is depicted in Figure 
1, and F atoms having occupancy factors <0.5 are omitted. 

(9) Greenhough, T. J.; Kolthammer, B. W. S.; Legzdins, P.; Trotter, J. 
Acta Crystallogr., Sect. B 1980, B36, 795. 
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Scheme I 

those of free formaldoxime.10 In valence-bond terms, the bonding 
within this grouping is thus best represented as 

Cr *- N(=CH2)OH 

with the ligand functioning as a formal two-electron donor. The 
hydroxyl H atom of the formaldoxime ligand is also linked by a 
hydrogen bond [H(10)-F(2) = 2.14 (8) A] to the counteranion.11 

The spectroscopic properties of [(^-C5H5)Cr(NO)2IN(CH2)-
OHJ]PF6

6 can be readily understood in terms of its solid-state 
molecular structure, thus indicating that the basic structural units 
persist in solutions. 

The two most likely mechanistic pathways for the unprecedented 
reaction 2 are those involving either oxidatively induced, intra­
molecular insertion of bound NO into the Cr-CH3 bond13 or 
charge-controlled, intermolecular attacks by NO+ at the Cr-CH3 
group. At present, we favor the latter pathways (Scheme I)15 since 
oxidation of (^-C5H5)Cr(NO)2CH3 by [Fe(phen)3]

3+ followed 
by treatment with NO does not afford the formaldoxime product 
of reaction 2.'8 It thus appears that reaction 2 occurs because 
(7?5-C5H5)Cr(NO)2CH3 is relatively difficult to oxidize and its 
Cr-CH3 bond is prone to nonoxidative attack by electrophiles.19 

Experiments designed to determine the scope of this new synthetic 
route to C-N bonds and to confirm the mechanism of reaction 
2 are currently in progress. 

(10) Levine, I. N. / . Chem. Phys. 1963, 38, 128. 
( H ) A similar feature has been observed for [(t;5-C5H5)3Mn3(/i2-NO)3-

(M3-NOH)]PF6.
12 

(12) Legzdins, P.; Nurse, C. R.; Rettig, S. J. J. Am. Chem. Soc. 1983,105, 
3727. 

(13) Related oxidatively promoted alkyl to acyl migratory insertions have 
been documented.14 

(14) Magnuson, R. H.; Meirowitz, R.; Zulu, S.; Giering, W. P. J. Am. 
Chem. Soc. 1982, 104, 5790 and references therein. 

(15) In this scheme, the attack by NO+ is portrayed as being a classical 
SE2 process.16 Also, the isomerization of the CH3NO ligand to bound 
CH2=NOH shown in the last step is probably facilitated by the acidic species 
present, an inference that has ample literature precedents.17 

(16) Rogers, W. N.; Page, J. A.; Baird, M. C. Inorg. Chem. 1981, 20, 3521 
and references therein. 

(17) Boyer, J. H. In "The Chemistry of the Nitro and Nitroso Groups"; 
Feuer, H., Ed.; Wiley-Interscience: Toronto, 1969; Part 1. 

(18) At room temperature in CH2Cl2, (?j!-C5H5)Cr(NO)2CH3 (i/N0 1777 
(s), 1669 (s) cm-1) is completely converted by 1 equiv of [Fe(phen)3]

3+ into 
a (ifs-C5H5)Cr(NO)2

+-containing product2 (»NO 1846 (s), 1745 (s) cm"1). 
(19) Legzdins, P.; Wassink, B., unpublished observations. 
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The central role played by electrophilic nitration in the theory 
of aromatic substitution1 has stimulated mass spectrometric ap­
proaches to its study in the gas phase. Unfortunately, the available 
results delineate reactivity patterns dominated by processes, e.g., 
charge exchange and oxygen-atom transfer, peculiar of mass 
spectrometric conditions and hardly consistent with solution-
chemistry data. Thus, NO2

+ fails to add to arenes, and the other 
reagents used, CH2ONO2

+ and EtO(N02)2
+, nitrate deactivated 

substrates at higher rates.2"4 Futhermore, the lack of discrim­
ination between isomeric nitrated adducts has prevented so far 
the crucial evaluation of positional selectivity. 

We report a gas-phase ionic nitration whose substrate and 
positional selectivity, measured with a combination of mass 
spectrometric and radiolytic techniques, conform to common 
experience in condensed-phase nitration. The electrophile used, 
MeO+(H)NO2, belongs to a class of nitrating reagents well-known 
in solution6 and is readily obtained in the gas phase, e.g., it rep­
resents a major ion in the CH4 chemical ionization (CI) spectrum 
of methyl nitrate, arising from the exothermic7 process 

CnH5
+ + MeNO3 — CnH4 + MeO+(H)NO2 «=1,2 (1) 

According to MINDO calculations,8 the protonated ester in its 
most stable structure (H^ = 150.5 kcal mol"1) can be regarded 
as a nitronium ion "solvated" by methanol, with a binding energy 
of ca. 34 kcal mol"1. The CI spectra of CH4/MeN03/C6H6 
mixtures display an abundant9 nitrated adduct, of unknown 
structure, arising from the process 

C6H6 + MeO+(H)NO2 — C6H6NO2
+ + MeOH (2) 

Replacement of C6H6 with C6D6 yields comparable amounts of 
C6D6NO2

+ and C6D5HNO2
+. Analogous adducts are formed from 

(1) Cf.: Schofield, K. "Aromatic Nitration"; Cambridge Press: London, 
1980. 

(2) Benezra, S. A.; Hoffman, M. K.; Bursey, M. M. J. Am. Chem. Soc. 
1970, 92, 7501-7502. 

(3) Morrison, J. D.; Stanney, K.; Tedder, J. M. J. Chem. Soc, Perkin 
Trans. 2 1981, 967-969. 

(4) Ausloos, P.; Lias, S. G. Int. J. Chem. Kinet. 1978, 10, 657-667. 
(5) Dunbar, R. C; Shen, J.; Olah, G. A. J. Am. Chem. Soc. 1972, 

6862-6864. 
(6) Raudnitz, H. Chem. Ber. 1927, 69, 738-743. See also ref 1, p 94, and 

references therein. 
(7) Calculations based on the heat of formation of MeO+(H)NO2 given 

in ref 8 and on data from Cox and Aue [(a) Cox, J. D.; Pilcher, G. 
"Thermochemistry of Organic and Organometallic Compounds"; Academic 
Press: New York, 1970. (b) Aue, D. H.; Bowers, M. T. In "Gas Phase Ion 
Chemistry"; Bowers, M. T., Ed.; Academic Press: New York, 1979; Vol. 2, 
p 2-53] lead to AH" values of-57 and -22 kcal mol"1 for the proton transfer 
from CH5

+ and C2H5
+, respectively. 

(8) Dewar, M. J. S.; Shanshal, M.; Worley, S. D. J. Am. Chem. Soc. 1969, 
91, 3590-3594. 

(9) The CI spectra were recorded at CH4 pressures up to ca. 0.5 torr and 
a source temperature of 150 0C, using a Hewlett-Packard 5982A quadrupole 
spectrometer or a ZAB-2F magnetic instrument (Micromass Ltd.). The ionic 
abundance of the QH6NO2

+ adduct in the CI spectra of CH4/MeN03/C6H6 
mixtures (molar ratios 1:0.016:0.002) ranges from 16% at ca. 0.25 torr to 26% 
at ca. 0.5 torr. 
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